2024年1月21日 星期日

Hacking All The Cars - Part 1


A step by step lab based mini course on analyzing your car network


I wanted to learn about hacking cars. As usual I searched around the internet and didn't find any comprehensive resources on how to do this, just bits and pieces of the same info over and over which is frustrating. I am not a car hacking expert, I just like to hack stuff. This mini course will run in a fully simulated lab environment available from open garages, which means in 5 minutes from now you can follow along and hack cars without ever bricking your girlfriends car. Since you obviously wouldn't attack your own Lambo, totally use your girlfriends Prius. 

Below are the topics covered in this blog  series so you can decide if you want to read further: 

Whats covered in this car hacking mini course: 

Setting up Virtual Environments for testing
Sniffing CAN Traffic
Parsing CAN Traffic
Reverse Engineering CAN IDs 
Denial of service attacks
Replaying/Injecting Traffic
Coding your own CAN Socket Tools in python
Targeted attacks against your cars components
Transitioning this to attacking a real car with hardware

The first thing we are going to do before we get into any car hacking specifics such as "WTF is CAN?", is get your lab up and running. We are going to run a simple simulated CAN Bus network which controls various features of your simulated car. Its better to learn by doing then sit here and recite a bunch of car network lingo at you and hope you remember it.  

I also don't want you to buy a bunch of hardware and jack into your real car right away. Instead there are options that can get you started hacking cars RIGHT NOW by following along with this tutorial. This will also serve to take away the fear of hacking your actual car by understanding what your doing first. 


Video Playlist: 




Setting up your Lab: 

First things first, set yourself up with an Ubuntu VMware install, and load it up. Optionally you could use a Kali Iinux VM, however, that thing drives me nuts with copy paste issues and I think Kayak was giving me install problems. So support is on you if you would like to use Kali. However, I do know Kali will work fine with OpenGarages virtual car.. So feel free to use it for that if you have it handy and want to get started right away. 


Install PreReq Libraries: 

Once you load this up you are going to want to install CAN utilities and pre-requisite libraries. This is really easy to do with the following Apt-get commands:
sudo apt-get update
sudo apt-get install libsdl2-dev libsdl2-image-dev can-utils  

Then we are going to pull down the ICSimulator repo: 


Starting the simulator: 

Once this is done we can startup the simulator by changing directories to the downloaded repo and running the following 2 commands, which will setup a virtual CAN interface and a simulator GUI Cluster: 

Run the setup Script to get the vcan0 interface up: 
root@kali:~/ICSim# ./setup_vcan.sh 
root@kali:~/ICSim# ./icsim vcan0

On a new terminal tab we will open up our simulators controller with the following command,
root@kali:~/ICSim#./controls vcan0

Note: that the controller must be the in-focus GUI screen to send keyboard commands to the simulator. 






How to Use the Simulator: 

The simulator has a speedometer with Right and Left turn signals, doors etc.  Below are the list of commands to control the simulator when the Control panel is in focus. Give them each a try and note the changes to the simulator. 
Up and Down keys control the gauges clusters speedometer
Left and Right keys Control the Blinkers
Right Shift + X, A or B open doors 
Left Shift + X, A or be Close doors

Try a few of the above commands for example Right Shift +X and you will see the interface change like so, notice the open door graphic: 


Awesome, thanks to OpenGarages you now you have your very own car to hack

Notice in the setup commands above we used a VCan0 interface. Run Ifconfig and you will now see that you indeed have a new network interface that speaks to the CAN network over VCan0. 

ficti0n@ubuntu:~/Desktop/ICSim$ ifconfig vcan0
vcan0     Link encap:UNSPEC  HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00  
          UP RUNNING NOARP  MTU:16  Metric:1
          RX packets:558904 errors:0 dropped:0 overruns:0 frame:0
          TX packets:558904 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1 
          RX bytes:3663935 (3.6 MB)  TX bytes:3663935 (3.6 MB)


Car networks run on a variety of protocols most prevalent being CAN. You can think of a CAN Bus like an old school networking hub where everyone can see everyone elses traffic. This is true to some extent although you may not see all of the cars traffic if its not connected to that particular bus your plugged into. You can think of CAN traffic kind of like UDP in that its send and forget, the main difference being parts of the CAN bus network don't actually have addresses and everything runs off arbitration IDs and priorities. Thats enough background to get you doing rather then reading.

With a little knowledge out of the way lets check if we can see our CAN traffic from our virtual car via the CanDump utility, which you installed as part of CanUtils package above. Using the following command on the vcan0 interface our simulator uses you can view a stream of traffic: 

ficti0n@ubuntu:~/Desktop/ICSim$ candump vcan0



Above we can see a bunch of CAN frames, and if we perform actions on the vehicle we will see changes to data values in the CanDump output.  However this may happen very fast, and we may not be able to see if for example we unlocked our simulators door. This is because things are changing constantly in the cars IDLE state. One single value changing may not stand out enough for us to take notice or may scroll so fast we cant see it. 


Capture and Replay CAN Actions: 

One option would be to perform an action and replay it, we should see the actions happen again in the replay if the traffic for the action we recorded is on the same bus network our device is plugged into. There are loads of networks within a car and its not guaranteed our network tap for example an OBD2 port plugin is connected to the same network as door we opened.  Or the door may not be connected to the network at all depending on your car and its age or how its configured. 

Replaying dumps with CanPlayer: 
Another useful tool included with CanUtils package is CanPlayer for replaying traffic. If the functionality we are trying to capture is on the same Bus as the adaptor plugged into the car, or in this case our Virtual CAN interface, we can use CanDump to save traffic to a file. We then use CanPlayer to replay the traffic on the network. For example lets run CanDump and open a door and then replay the functionality with CanPlayer. 

Lab 1 Steps: 

  1. Run CanDump
  2. Right Shift + X to open a door
  3. Cancel CanDump (ctrl+c)
  4. Left Shift + X to close the door
  5. Run can player with the saved dump and it will replay the traffic and open the door

Recording the door opening:  (-l for logging) 
ficti0n@ubuntu:~/Desktop/ICSim$ candump -l vcan0

Replaying the CanDump file:  (use the file your can dump created) 
ficti0n@ubuntu:~/Desktop/ICSim$ canplayer -I candump-2018-04-06_154441.log 

Nice, so if all went well you should see that your door is now open again. If this did not happen when attacking a real car, just try to replay it again. CAN networks are not like TCP/IP, they are more like UDP in that you send out your request and its not expecting a response. So if it gets lost then it gets lost and you have to resend. Perhaps something with higher priority on the network was sending at the time of your replay and your traffic was overshadowed by it.   




Interacting with the Can Bus and Reversing Traffic: 

So thats cool, but what about actually understanding what is going on with this traffic, CanDump is not very useful for this, is scrolls by to quickly for us to learn much from.  Instead we can use CanSniffer with colorized output to show us the bytes within packets that change. Below is an example of CanSniffer Traffic: 

To startup can sniffer run the following: 
ficti0n@ubuntu:~/Desktop/ICSim$ cansniffer -c vcan0




You will see 3 fields, Time, ID  and Data. Its pretty easy to figure out what these are based on thier name. The most important part for our usage in this blog are the ID and the Data fields.  

The ID field is the frame ID which is loosely associated with the device on the network which is effected by the frame being sent. The ID to also determines the priority of the frame on the network.  The lower the number of the CAN-ID the higher priority it has on the network and more likely it will be handled first.  The data field is the data being sent to change some parameter like unlocking a door or updating output. You will notice that some of the bytes are highlighted RED. The values in red are the values that are changing during the idle state you are currently in. 


Determine which ID and Byte controls the throttle: 

So with the terminal sniffing window open put the simulator and the controller into the foreground, with the controller being the window you have clicked and selected.  Pay attention to the CanSniffer output while hitting the UP ARROW and look for a value that was white but is now Red and increasing in value as the throttle goes up.  This might take you a few minutes of paying attention to whats going on to see. 

The following 2 pictures show ID 244 in the IDLE state followed by pressing the up button to increase the speed. You will notice a byte has turned red and is increasing in value through a range of HEX values 0-F. It will continue to enumerate through values till it reaches its max speed. 





The byte in ID 244 which is changing is the value while the throttle is engaged, so 244 associated in some way with the increasing speed.   The throttle speed is a good value to start with as it keeps increasing its value when pressed making it easier to spot while viewing the CanSniffer output.  


Singling out Values with Filters: 

If you would like to single out the throttle value then click the terminal window and press -000000 followed by the Enter key which will clear out all of the values scrolling. Then press +244 followed by the Enter key which will add back the throttle ID. You can now click the controller again and increase the speed with your Up arrow button without all the noise clouding your view.  You will instead as shown below only have ID 244 in your output: 




To get back all of the IDs again click the terminal window and input +000000 followed by the Enter key.   Now you should see all of the output as before.  Essentially 000000 means include everything. But when you put a minus in front of it then it negates everything and clears your terminal window filtering out all values. 


Determine Blinker ID: 

Now lets figure out another ID for the blinkers. If you hit the left or right arrow with the controls window selected you will notice a whole new ID appears in the list, ID 188 shown in the picture below which is associated with the blinker. 




This ID was not listed before as it was not in use within the data output until you pressed the blinker control.  Lets single this value out by pressing -000000 followed by +188.  Just like in the throttle example your terminal should only show ID 188, initially it will show with 00 byte values. 

 As you press the left and the right blinker you will see the first Byte change from 00 to 01 or 02. If neither is pressed as in the screenshot above it will be 00. Its kind of hard to have the controller in focus and get a screenshot at the same time but the ID will remain visible as 00 until it times out and disappears from the list when not active. However with it filtered out as above you can get a better view of things and it wont disappear.  


Time for YOU to do some Protocol Reversing:

This lab will give you a good idea how to reverse all of the functionality of the car and associate each action with the proper ID and BYTE. This way you can create a map of intended functionality changes you wish to make.  Above we have done a few walk throughs with you on how to determine which byte and ID is associated with an action. Now its time to map everything out yourself with all the remaining functionality before moving on to attacking individual components.  


Lab Work Suggestion: 


  1. Take out a piece of paper and a pencil
  2. Try unlocking and locking doors and write down the ID which controls this action (remember your filters)
  3. Try unlocking each door and write down the BYTES needed for each door to open
  4. Try locking each doors and what Bytes change and what are their values, write them down
  5. Do the same thing for the blinkers left and right (Might be different then what I did above) 
  6. What ID is the speedometer using?  What byte changes the speed? 


Attacking Functionality Directly: 

With all of the functionality mapped out we can now try to target various devices in the network directly without interacting with the controllers GUI. Maybe we broke into the car via cellular OnStar connection  or the center console units BLE connection which was connected to the CAN network in some way.  
After an exploit we have direct access to the CAN network and we would like to perform actions. Or maybe you have installed a wireless device into an OBD2 port under the dashboard you have remote access to the automobile. 

Using the data from the CAN network reversing lab above we can call these actions directly with the proper CAN-ID and Byte.  Since we are remote to the target we can't just reach over and grab the steering wheel or hit the throttle we will instead send your CAN frame to make the change.
One way we can do this is via the CanSend utility. Lets take our information from our lab above and make the left turn signal flash with the following ID 188 for the turn signal by changing the first byte to 01 indicating the left signal is pressed. CanSend uses the format ID#Data. You will see this below when sending the turn signal via CanSend. 

ficti0n@ubuntu:~/Desktop/ICSim$ cansend vcan0 188#01000000 



You should have noticed that the left signal flashed. If not pay more attention and give it another try or make sure you used the correct ID and changed the correct byte.  So lets do the same thing with the throttle and try to set the speed to something with ID 244 that we determined was the throttle. 

ficti0n@ubuntu:~/Desktop/ICSim$ cansend vcan0 244#00000011F6 

My guess is that nothing happened because its so fast the needle is not going to jump to that value. So instead lets try repeating this over and over again with a bash loop which simply says that while True keep sending the throttle value of 11 which equates to about 30mph: 

ficti0n@ubuntu:~/Desktop/ICSim$ while true; do cansend vcan0 244#00000011F6;  done




Yes thats much better, you may notice the needle jumping back and forth a bit. The reason the needle is bouncing back and forth is because the normal CAN traffic is sent telling the car its actually set to 00 in between your frames saying its 30mph.  But it worked and you have now changed the speed the car sees and you have flashed the blinker without using the cars normal blinker controls. Pretty cool right? 


Monitor the CAN Bus and react to it: 

Another way to handle this issue is to monitor the CAN network and when it sees an ID sent it will automatically send the corresponding ID with a different value.. Lets give that a try to modify our speed output by monitoring for changes. Below we are simply running CanDump and parsing for ID 244 in the log output which is the throttle value that tells the car the speed. When a device in the car reports ID 244 and its value we will immediately resend our own value saying the speed is 30mph with the value 11.  See below command and try this out. 

ficti0n@ubuntu:~/Desktop/ICSim$ candump vcan0 | grep " 244 " | while read line; do cansend vcan0 244#00000011F6; done

With this running after a few seconds you will see the speed adjust to around 30MPH once it captures a legitimate CAN-ID 244 from the network traffic and sends its own value right after.  

Ok cool, so now while the above command is still running click the controller window and start holding down the Up arrow with the controller in focus.. After a few seconds or so when the speed gets above 30MPH you will see the needle fighting for the real higher value and adjusting back to 30MPH as your command keeps sending its on value as a replacement to the real speed. 

So thats one way of monitoring the network and reacting to what you see in a very crude manner.  Maybe someone stole your car and you want to monitor for an open door and if they try to open the door it immediately locks them in. 


Conclusion and whats next: 

I am not an expert car hacker but I hope you enjoyed this. Thats about as far as I want to go into this subject today, in the next blog we will get into how to code python to perform actions on the CAN network to manipulate things in a similar way.  With your own code you are not limited to the functionality of the tools you are provided and can do whatever you want. This is much more powerful then just using the CanUtils pre defined tools. Later on I will also get into the hardware side of things if you would like to try this on a real car where things are more complicated and things can go wrong. 

More information

  1. Hacker Tools
  2. Hacking Tools Download
  3. Pentest Tools Alternative
  4. How To Install Pentest Tools In Ubuntu
  5. Pentest Tools Port Scanner
  6. How To Make Hacking Tools
  7. Hacker Tools For Windows
  8. Hacking Tools For Windows
  9. Pentest Tools Port Scanner
  10. Usb Pentest Tools
  11. Hacker Tools Windows
  12. Hacking Tools 2019
  13. Hack Tools For Games
  14. Hack Tools 2019
  15. Hacker Tools Linux
  16. Nsa Hack Tools
  17. Pentest Tools Website Vulnerability
  18. Hacker Tool Kit
  19. Hacks And Tools
  20. Easy Hack Tools
  21. Nsa Hack Tools
  22. Install Pentest Tools Ubuntu
  23. Hacker Tools For Ios
  24. Hacking Tools For Pc
  25. Hacking Tools For Windows Free Download
  26. Pentest Tools Alternative
  27. Pentest Tools Apk
  28. Hacking Tools 2019
  29. Install Pentest Tools Ubuntu
  30. Hack Tools For Windows
  31. Hacker Tools Apk Download
  32. Hack Tools Mac
  33. New Hack Tools
  34. Hack Tools 2019
  35. Hacking Tools For Mac
  36. Hack Tool Apk No Root
  37. Hack Tool Apk No Root
  38. Hacker Tools Apk
  39. Pentest Tools Bluekeep
  40. Pentest Tools Apk
  41. Hack Tools
  42. Hacker Tools List
  43. Bluetooth Hacking Tools Kali
  44. Pentest Tools Online
  45. Hacker Tools Apk
  46. Hacking Tools Windows 10
  47. Hack Tools Online
  48. Physical Pentest Tools
  49. Pentest Tools Nmap
  50. Hacking App
  51. Hacker Tool Kit
  52. Hacking Tools Online
  53. Nsa Hack Tools Download
  54. Nsa Hack Tools
  55. Hacker Tools Hardware
  56. Hacking Apps
  57. Hacker Tools Software
  58. Pentest Tools Tcp Port Scanner
  59. Tools For Hacker
  60. Hacking Tools Windows
  61. Hacker Tools Free Download
  62. Pentest Tools List
  63. Hack Tools
  64. Hack Website Online Tool
  65. Pentest Tools Url Fuzzer
  66. Hack Tools 2019
  67. Nsa Hacker Tools
  68. Hacking Tools Online
  69. Hacker Tool Kit
  70. Pentest Tools List
  71. Hacker Tools
  72. Hacking Tools Kit
  73. Hacker Tools Free
  74. Pentest Tools Bluekeep
  75. Hack Tools For Ubuntu
  76. Hacking Tools Kit
  77. Best Hacking Tools 2019
  78. Hack Tools Download
  79. Pentest Recon Tools
  80. Pentest Tools Url Fuzzer
  81. Game Hacking
  82. Hack Tools Mac
  83. Hacker Tools 2019
  84. Hacker Tools Apk
  85. Hacking Tools For Beginners
  86. Pentest Tools Port Scanner
  87. New Hack Tools
  88. Pentest Tools Online
  89. What Are Hacking Tools
  90. Hacking Tools Usb
  91. Bluetooth Hacking Tools Kali
  92. Hacking Apps
  93. Hacking App
  94. Physical Pentest Tools
  95. Hacker Tools For Pc
  96. Pentest Tools Linux
  97. Free Pentest Tools For Windows
  98. Nsa Hack Tools
  99. Hacker Tools Online
  100. Black Hat Hacker Tools
  101. Pentest Automation Tools
  102. Pentest Tools Tcp Port Scanner
  103. Free Pentest Tools For Windows
  104. Blackhat Hacker Tools
  105. Hacker Tools For Windows
  106. Hacker Tools Hardware
  107. Tools For Hacker
  108. Hacking Tools Windows 10
  109. Kik Hack Tools
  110. Hacker Tools
  111. Game Hacking
  112. Hacking Tools Windows 10
  113. Hacking Tools Mac
  114. How To Hack
  115. Pentest Tools Windows
  116. Tools Used For Hacking
  117. Hackrf Tools
  118. Nsa Hack Tools
  119. Physical Pentest Tools
  120. Hacking Tools Download
  121. Hacking Tools Hardware
  122. Growth Hacker Tools
  123. Pentest Tools
  124. How To Hack
  125. Tools For Hacker
  126. Tools 4 Hack
  127. Hack Tools Pc
  128. Pentest Tools Alternative
  129. Android Hack Tools Github
  130. Pentest Tools Windows
  131. Hacking App
  132. Hacking Tools Windows
  133. Hacker Tools Mac
  134. Bluetooth Hacking Tools Kali
  135. Hacker Tools For Ios
  136. Pentest Automation Tools
  137. Pentest Tools Download
  138. Hacker Tools Windows
  139. Pentest Tools Free
  140. Best Hacking Tools 2019
  141. Pentest Tools
  142. Hacker Tools Online
  143. Pentest Tools Bluekeep
  144. Hackers Toolbox
  145. Ethical Hacker Tools
  146. Hack Tools For Mac
  147. Hack Tools 2019
  148. Hacking Tools For Windows Free Download
  149. Hacker Tools Free
  150. Hacker Search Tools
  151. Hacks And Tools
  152. Hacking Tools For Mac
  153. Bluetooth Hacking Tools Kali
  154. Tools Used For Hacking
  155. Pentest Tools Linux
  156. Hack Tools 2019
  157. Hacking Tools Github
  158. Hack Tools Download
  159. Free Pentest Tools For Windows
  160. Hacking Tools Kit
  161. Top Pentest Tools
  162. Hacking Tools Github
  163. Hack Tools 2019
  164. Hack Website Online Tool
  165. Hacking Tools For Beginners
  166. Hacker Tools Software
  167. Nsa Hack Tools Download
  168. Hacking Apps
  169. Termux Hacking Tools 2019

歡迎蒞臨:https://ofa588.com/

娛樂推薦:https://www.ofa86.com/

Potao Express Samples

http://www.welivesecurity.com/2015/07/30/operation-potao-express/

http://www.welivesecurity.com/wp-content/uploads/2015/07/Operation-Potao-Express_final_v2.pdf


TL; DR


2011- July 2015
  • Aka  Sapotao and node69
  • Group - Sandworm / Quedagh APT
  • Vectors - USB, exe as doc, xls
  • Victims - RU, BY, AM, GE 
  • Victims - MMM group, UA gov
  • truecryptrussia.ru has been serving modified versions of the encryption software (Win32/FakeTC) that included a backdoor to selected targets. 
  • Win32/FakeTC - data theft from encrypted drives
  • The Potao main DLL only takes care of its core functionality; the actual spying functions are implemented in the form of downloadable modules. The plugins are downloaded each time the malware starts, since they aren't stored on the hard drive.
  • 1st Full Plugin and its export function is called Plug. Full plugins run continuously until the infected system is restarted
  • 2nd Light Plugin with an export function Scan. Light plugins terminate immediately after returning a buffer with the information they harvested off the victim's machine.
  • Some of the plugins were signed with a certificate issued to "Grandtorg":
  • Traffic 
  • Strong encryption. The data sent is encapsulated using the XML-RPC protocol.
  • MethodName value 10a7d030-1a61-11e3-beea-001c42e2a08b is always present in Potao traffic.
  • After receiving the request the C&C server generates an RSA-2048 public key and signs this generated key with another, static RSA-2048 private key .
  • In 2nd stage the malware generates a symmetric AES-256 key. This AES session key is encrypted with the newly received RSA-2048 public key and sent to the C&C server.
  • The actual data exchange after the key exchange is then encrypted using symmetric cryptography, which is faster, with the AES-256 key
  • The Potao malware sends an encrypted request to the server with computer ID, campaign ID, OS version, version of malware, computer name, current privileges, OS architecture (64 or 32bits) and also the name of the current process.
  • Potao USB - uses social engineering, exe in the root disguised as drive icon
  • Potao Anti RE -  uses the MurmurHash2 algorithm for computing the hashes of the API function names.
  • Potao Anti RE - encryption of strings
  • Russian TrueCrypt Win32/FakeTC - The malicious program code within the otherwise functional TrueCrypt software runs in its own thread. This thread, created at the end of the Mount function, enumerates files on the mounted encrypted drive, and if certain conditions are met, it connects to the C&C server, ready to execute commands from the attackers.
  • IOC https://github.com/eset/malware-ioc/tree/master/potao

TypeSHA256MD5
1stVersion1fe6af3d704d2fc0c7acd58b069a31eec866668ec6e25f52354e6e61266db8db85b0e3264820008a30f17ca19332fa19
1stVersion2ff0941fe3514abc12484ad2853d22fd7cb36469a313b5ecb6ef0c6391cf78abac854a3c91d52bfc09605506e76975ae
1stVersion54a76f5cd5a32ed7d5fa78e5d8311bafc0de57a475bc2fddc23ee4b3510b9d443b7d88a069631111d5585b1b10cccc86
1stVersion76c7c67274cf5384615a120e69be3af64cc31d9c4f05ff2031120612443c8360d1658b792dd1569abc27966083f59d44
1stVersion244c181eb442fefcf1e1daf900896bee6569481c0e885e3c63efeef86cd64c550c7183d761f15772b7e9c788be601d29
1stVersion887a721254486263f1f3f25f3c677da62ef5c062c3afa7ef70c895bc8b17b424a35e48909a49334a7ebb5448a78dcff9
1stVersion945c594aee1b5bd0f3a72abe8f5a3df74fc6ca686887db5e40fe859e3fc90bb1502f35002b1a95f1ae135baff6cff836
1stVersionab8d308fd59a8db8a130fcfdb6db56c4f7717877c465be98f71284bdfccdfa25a446ced5db1de877cf78f77741e2a804
1stVersionb22a614a291111398657cf8d1fa64fa50ed9c66c66a0b09d08c53972c6536766d939a05e1e3c9d7b6127d503c025dbc4
1stVersionfcfdcbdd60f105af1362cfeb3decbbbbe09d5fc82bde6ee8dfd846b2b844f97214634d446471b9e2f55158d9ac09d0b2
DebugVersion910f55e1c4e75696405e158e40b55238d767730c60119539b644ef3e6bc32a5d7263a328f0d47c76b4e103546b648484
DebugVersionc821cb34c86ec259af37c389a8f6cd635d98753576c675882c9896025a1abc53bdc9255df5385f534fea83b497c371c8
DebugVersionf845778c3f2e3272145621776a90f662ee9344e3ae550c76f65fd954e7277d195199fcd031987834ed3121fb316f4970
Droppersfrompostalsites4dcf14c41b31f8accf9683917bfc9159b9178d6fe36227195fabc232909452af65f494580c95e10541d1f377c0a7bd49
Droppersfrompostalsites8bc189dee0a71b3a8a1767e95cc726e13808ed7d2e9546a9d6b6843cea5eb3bda4b0615cb639607e6905437dd900c059
Droppersfrompostalsites048621ecf8f25133b2b09d512bb0fe15fc274ec7cb2ccc966aeb44d7a88beb5b07e99b2f572b84af5c4504c23f1653bb
Droppersfrompostalsitesaa23a93d2fed81daacb93ea7ad633426e04fcd063ff2ea6c0af5649c6cfa03851927a80cd45f0d27b1ae034c11ddedb0
Droppersfrompostalsitesc66955f667e9045ea5591ebf9b59246ad86227f174ea817d1398815a292b8c88579ad4a596602a10b7cf4659b6b6909d
Droppersfrompostalsitesd6f126ab387f1d856672c730991573385c5746c7c84738ab97b13c897063ff4ae64eb8b571f655b744c9154d8032caef
Dropperswdecoy61dd8b60ac35e91771d9ed4f337cd63e0aa6d0a0c5a17bb28cac59b3c21c24a9d755e52ba5658a639c778c22d1a906a3
Dropperswdecoy4328b06093a4ad01f828dc837053cb058fe00f3a7fd5cfb9d1ff7feb7ebb8e32b4d909077aa25f31386722e716a5305c
Dropperswdecoy15760f0979f2ba1b4d991f19e8b59fc1e61632fcc88755a4d147c0f5d47965c5fc4b285088413127b6d827656b9d0481
Dropperswdecoyb9c285f485421177e616a148410ddc5b02e43f0af375d3141b7e829f7d487bfd73e7ee83133a175b815059f1af79ab1b
Dropperswdecoycf3b0d8e9a7d0ad32351ade0c52de583b5ca2f72e5af4adbf638c81f4ad8fbcbeebbcb1ed5f5606aec296168dee39166
Dropperswdecoydbc1b98b1df1d9c2dc8a5635682ed44a91df6359264ed63370724afa9f19c7ee5a24a7370f35dbdbb81adf52e769a442
FakeTrueCryptextractedexe4c01ffcc90e6271374b34b252fefb5d6fffda29f6ad645a879a159f78e095979b64dbe5817b24d17a0404e9b2606ad96
FakeTrueCryptextractedexe5de8c04a77e37dc1860da490453085506f8aa378fbc7d811128694d8581b89ba7ca6101c2ae4838fbbd7ceb0b2354e43
FakeTrueCryptextractedexe73aae05fab96290cabbe4b0ec561d2f6d79da71834509c4b1f4b9ae714159b42f64704ed25f4c728af996eee3ee85411
FakeTrueCryptextractedexec7212d249b5eb7e2cea948a173ce96e1d2b8c44dcc2bb1d101dce64bb3f5beccc1f715ff0afc78af81d215d485cc235c
FakeTrueCryptSetup42028874fae37ad9dc89eb37149ecb1e6439869918309a07f056924c1b981deff34b77f7b2233ee6f727d59fb28f438a
FakeTrueCryptSetupa3a43bbc69e24c0bc3ab06fbf3ccc35cf8687e2862f86fb0d269258b68c710c9babd17701cbe876149dc07e68ec7ca4f
FakeTrueCryptSetupb8844e5b72971fe67d2905e77ddaa3366ae1c3bead92be6effd58691bc1ff8eccfc8901fe6a9a8299087bfc73ae8909e
FakeTrueCryptSetupfe3547f0e052c71f872bf09cdc1654137ee68f878fc6d5a78df16a13e6de176883f3ec97a95595ebe40a75e94c98a7bd
OtherDroppers2de76a3c07344ce322151dbb42febdff97ade8176466a3af07e5280bd859a18638e708fea8016520cb25d3cb933f2244
OtherDroppers4e88b8b121d768c611fe16ae1f008502b2191edc6f2ee84fef7b12b4d86fe000360df4c2f2b99052c07e08edbe15ab2c
OtherDroppers29dfc81b400a1400782623c618cb1d507f5d17bb13de44f123a333093648048f89a3ea3967745e04199ebf222494452e
OtherDroppers97afe4b12a9fed40ad20ab191ba0a577f5a46cbfb307e118a7ae69d04adc2e2d6ba88e8e74b12c914483c026ae92eb42
OtherDroppers793a8ce811f423dfde47a5f44ae50e19e7e41ad055e56c7345927eac951e966b043f99a875424ca0023a21739dba51ef
OtherDroppers904bb2efe661f654425e691b7748556e558a636d4f25c43af9d2d4dfbe83262e02d438df779affddaf02ca995c60cecb
OtherDroppersb62589ee5ba94d15edcf8613e3d57255dd7a12fce6d2dbd660fd7281ce6234f411b4e7ea6bae19a29343ae3ff3fb00ca
OtherDroppersd2c11706736fda2b178ac388206472fd8d050e0f13568c84b37683423acd155d27d74523b182ae630c4e5236897e11f3
OtherDroppersf1f61a0f9488be3925665f8063006f90fab1bf0bd0b6ff5f7799f8995ff8960e1ab8d45656e245aca4e59aa0519f6ba0
USBSpreaders1acae7c11fb559b81df5fc6d0df0fe502e87f674ca9f4aefc2d7d8f828ba7f5c76dda7ca15323fd658054e0550149b7b
USBSpreaders3d78f52fa0c08d8bf3d42074bf76ee56aa233fb9a6bc76119998d085d94368caca1a3618088f91b8fb2a30c9a9aa4aca
USBSpreaders7d15bd854c1dfef847cdd3caabdf4ab81f2410ee5c7f91d377cc72eb81135ff4a2bb01b764491dd61fa3a7ba5afc709c
USBSpreaders09c04206b57bb8582faffb37e4ebb6867a02492ffc08268bcbc717708d1a8919a59053cc3f66e72540634eb7895824ac
USBSpreaders12bb18fa9a12cb89dea3733b342940b80cd453886390079cb4c2ffcd664baeda2bd0d2b5ee4e93717ea71445b102e38e
USBSpreaders34e6fb074284e58ca80961feda4fe651d6d658077914a528a4a6efa91ecc749d057028e46ea797834da401e4db7c860a
USBSpreaders90b20b1687909c2f76f750ba3fd4b14731ce736c08c3a8608d28eae3f4cd68f3514423670de210f13092d6cb8916748e
USBSpreaders93accb71bf4e776955756c76990298decfebe4b1dd9fbf9d368e81dc1cb9532dabb9f4fab64dd7a03574abdd1076b5ea
USBSpreaders99a09ad92cc1a2564f3051057383cb6268893bc4a62903eabf3538c6bfb3aa9c542b00f903f945ad3a9291cb0af73446
USBSpreaders339a5199e6d0b5f781b08b2ca0ad0495e75e52b8e2fd69e1d970388fbca7a0d6a427ff7abb17af6cf5fb70c49e9bf4e1
USBSpreaders340b09d661a6ac45af53c348a5c1846ad6323d34311e66454e46c1d38d53af8b2646f7159e1723f089d63e08c8bfaffb
USBSpreaders461dd5a58ffcad9fffba9181e234f2e0149c8b8ba28c7ea53753c74fdfa0b0d5609abb2a86c324bbb9ba1e253595e573
USBSpreaders4688afcc161603bfa1c997b6d71b9618be96f9ff980e5486c451b1cc2c5076cbae552fc43f1ba8684655d8bf8c6af869
USBSpreaders7492e84a30e890ebe3ca5140ad547965cc8c43f0a02f66be153b038a73ee53141234bf4f0f5debc800d85c1bd2255671
USBSpreaders61862a55dcf8212ce9dd4a8f0c92447a6c7093681c592eb937a247e38c8109d4e685ea8b37f707f3706d7281b8f6816a
USBSpreaders95631685006ac92b7eb0755274e2a36a3c9058cf462dd46f9f4f66e8d67b9db29179f4683ece450c1ac7a819b32bdb6d
USBSpreadersb8b02cc57e45bcf500b433806e6a4f8af7f0ac0c5fc9adfd11820eebf4eb5d79cdc60eb93b594fb5e7e5895e2b441240
USBSpreaderse57eb9f7fdf3f0e90b1755d947f1fe7bb65e67308f1f4a8c25bc2946512934b739b67cc6dae5214328022c44f28ced8b
USBSpreaderse3892d2d9f87ea848477529458d025898b24a6802eb4df13e96b0314334635d03813b848162261cc5982dd64c741b450
USBSpreadersf1d7e36af4c30bf3d680c87bbc4430de282d00323bf8ae9e17b04862af28673635724e234f6258e601257fb219db9079


More info

歡迎蒞臨:https://ofa588.com/

娛樂推薦:https://www.ofa86.com/

CEH: System Hacking, Cracking A Password, Understanding The LAN Manager Hash, NetBIOS DoS Attacks


Passwords are the key element of information require to access the system. Similarly, the first step is to access the system is that you should know how to crack the password of the target system. There is a fact that users selects passwords that are easy to guess. Once a password is guessed or cracked, it can be the launching point for escalating privileges, executing applications, hiding files, and covering tracks. If guessing a password fails, then passwords may be cracked manually or with automated tools such as a dictionary or brute-force method.

Cracking a Password

Passwords are stored in the Security Accounts Manager (SAM) file on a Windows system and in a password shadow file on a Linux system.

Manual password cracking involves attempting to log on with different passwords. The hacker follows these steps:
  1. Find a valid user account (such as Administrator or Guest).
  2. Create a list of possible passwords.
  3. Rank the passwords from high to low probability.
  4. Key in each password.
  5. Try again until a successful password is found.
A hacker can also create a script file that tries each password in a list. This is still considered manual cracking, but it's time consuming and not usually effective.

A more efficient way of cracking a password is to gain access to the password file on a system. Most systems hash (one-way encrypt) a password for storage on a system. During the logon process, the password entered by the user is hashed using the same algorithm and then compared to the hashed passwords stored in the file. A hacker can attempt to gain access to the hashing algorithm stored on the server instead of trying to guess or otherwise identify the password. If the hacker is successful, they can decrypt the passwords stored on the server.

Understanding the LAN Manager Hash

Windows 2000 uses NT LAN Manager (NTLM) hashing to secure passwords in transit on the network. Depending on the password, NTLM hashing can be weak and easy to break. For example, let's say that the password is 123456abcdef . When this password is encrypted with the NTLM algorithm, it's first converted to all uppercase: 123456ABCDEF . The password is padded with null (blank) characters to make it 14 characters long: 123456ABCDEF__ . Before the password is encrypted, the 14-character string is split in half: 123456A and
BCDEF__ . Each string is individually encrypted, and the results are concatenated:

123456A = 6BF11E04AFAB197F
BCDEF__ = F1E9FFDCC75575B15

The hash is 6BF11E04AFAB197FF1E9FFDCC75575B15 .

Cracking Windows 2000 Passwords

The SAM file in Windows contains the usernames and hashed passwords. It's located in the Windows\system32\config directory. The file is locked when the operating system is running so that a hacker can't attempt to copy the file while the machine is booted to Windows.

One option for copying the SAM file is to boot to an alternate operating system such as DOS or Linux with a boot CD. Alternately, the file can be copied from the repair directory. If a system administrator uses the RDISK feature of Windows to back up the system, then a compressed copy of the SAM file called SAM._ is created in C:\windows\repair . To expand this file, use the following command at the command prompt:

C:\>expand sam._ sam

After the file is uncompressed, a dictionary, hybrid, or brute-force attack can be run against the SAM file using a tool like L0phtCrack. A similar tool to L0phtcrack is Ophcrack.

Download and install ophcrack from http://ophcrack.sourceforge.net/

Redirecting the SMB Logon to the Attacker

Another way to discover passwords on a network is to redirect the Server Message Block (SMB) logon to an attacker's computer so that the passwords are sent to the hacker. In order to do this, the hacker must sniff the NTLM responses from the authentication server and trick the victim into attempting Windows authentication with the attacker's computer.

A common technique is to send the victim an email message with an embedded link to a fraudulent SMB server. When the link is clicked, the user unwittingly sends their credentials over the network.

SMBRelay

An SMB server that captures usernames and password hashes from incoming
SMB traffic. SMBRelay can also perform man-in-the-middle (MITM) attacks.

SMBRelay2

Similar to SMBRelay but uses NetBIOS names instead of IP addresses to capture usernames and passwords.

pwdump2

A program that extracts the password hashes from a SAM file on a Windows system. The extracted password hashes can then be run through L0phtCrack to break the passwords.

Samdump

Another program that extracts NTLM hashed passwords from a SAM file.

C2MYAZZ

A spyware program that makes Windows clients send their passwords as clear text. It displays usernames and their passwords as users attach to server resources.

NetBIOS DoS Attacks

A NetBIOS denial-of-service (DoS) attack sends a NetBIOS Name Release message to the NetBIOS Name Service on a target Windows systems and forces the system to place its name in conflict so that the name can no longer be used. This essentially blocks the client from participating in the NetBIOS network and creates a network DoS for that system.
  1. Start with a memorable phrase, such as "Maryhadalittlelamb"
  2. Change every other character to uppercase, resulting in "MaRyHaDaLiTtLeLaMb"
  3. Change a to @ and i to 1 to yield "M@RyH@D@L1TtLeL@Mb"
  4. Drop every other pair to result in a secure repeatable password or "M@H@L1LeMb"

Now you have a password that meets all the requirements, yet can be "remade" if necessary. More info
  1. Hacking Tools And Software
  2. Hack Tools For Games
  3. Pentest Reporting Tools
  4. Pentest Box Tools Download
  5. Hack Tools
  6. Tools 4 Hack
  7. Hack Tool Apk No Root
  8. Hacking Tools Mac
  9. Hacking Tools 2020
  10. Blackhat Hacker Tools
  11. Hack Tools
  12. Hacking Tools Software
  13. Hack Tool Apk No Root
  14. How To Make Hacking Tools
  15. Hacker Techniques Tools And Incident Handling
  16. Hack Tools 2019
  17. Hack Tools
  18. Hacking Tools For Mac
  19. Hacking Tools Windows 10
  20. Hacking Tools Software
  21. Pentest Tools Review
  22. Hack Tools For Windows
  23. Hacking Tools For Pc
  24. Hacking Tools For Windows
  25. Hacking Tools Windows
  26. Pentest Tools Open Source
  27. Hacker Tools For Pc
  28. Pentest Tools List
  29. Hacker Tools Windows
  30. Hacker Tools List
  31. Hacker Tools Apk
  32. Physical Pentest Tools
  33. Pentest Tools Free
  34. Hacker Tools Free
  35. Hacker Tools 2019
  36. Best Hacking Tools 2020
  37. Pentest Tools
  38. Hacker Tools
  39. Hacking Tools 2019
  40. Hacking Tools Pc
  41. Hack Apps
  42. Pentest Tools Find Subdomains
  43. Game Hacking
  44. Pentest Automation Tools
  45. Hacking Tools Usb
  46. Pentest Tools Subdomain
  47. Install Pentest Tools Ubuntu
  48. Hacker Tools Apk
  49. Termux Hacking Tools 2019
  50. Hacking Tools For Mac
  51. Hacking Tools Mac
  52. Wifi Hacker Tools For Windows
  53. Physical Pentest Tools
  54. Hack Tools Download
  55. New Hacker Tools
  56. Hack Tools Github
  57. Hacking Tools For Windows
  58. Hack Tools Mac
  59. Hack Website Online Tool
  60. Pentest Tools Alternative
  61. Free Pentest Tools For Windows
  62. Hacking Tools Kit
  63. Hack Tools Online
  64. Nsa Hacker Tools
  65. Hack Tools For Windows
  66. Kik Hack Tools
  67. Computer Hacker
  68. Hacker Tools Mac
  69. Pentest Tools Download
  70. Best Hacking Tools 2020
  71. Hacker Tools List
  72. Hacking Tools For Windows Free Download
  73. Hackers Toolbox
  74. Hack Tools Github
  75. Pentest Recon Tools
  76. Top Pentest Tools
  77. Pentest Tools Tcp Port Scanner
  78. Hacking Tools For Windows 7
  79. Hacking Tools 2020
  80. Hacking Tools 2020
  81. Hacking Apps
  82. How To Make Hacking Tools
  83. Pentest Tools For Android
  84. Game Hacking
  85. Pentest Tools Free
  86. Pentest Tools Bluekeep
  87. Install Pentest Tools Ubuntu
  88. Kik Hack Tools
  89. Pentest Tools Github
  90. Nsa Hack Tools Download
  91. Hacking Tools Software
  92. Hacking Tools Github
  93. Hacker Tools
  94. Usb Pentest Tools
  95. Bluetooth Hacking Tools Kali
  96. Pentest Tools Bluekeep
  97. Pentest Tools
  98. Hacking Tools Online
  99. Pentest Tools Find Subdomains
  100. Hacking Tools For Games
  101. Pentest Tools For Android
  102. Hacker Tools 2019
  103. Pentest Tools Find Subdomains
  104. Hack Tool Apk
  105. How To Install Pentest Tools In Ubuntu
  106. Game Hacking
  107. Hack Tools For Pc
  108. Tools Used For Hacking
  109. Termux Hacking Tools 2019
  110. Hacker Tools Apk
  111. Hacking Tools Windows 10
  112. Hacking Tools
  113. Hacker Search Tools
  114. Hacker Tools For Windows
  115. Hacker Tools Apk Download
  116. Pentest Tools For Mac
  117. Pentest Tools Review
  118. Hacking Tools For Windows
  119. Pentest Tools For Ubuntu
  120. Hack Tools Download
  121. Hacking Tools For Windows
  122. Hack Tools Mac
  123. Hacking Tools For Mac
  124. Hack App
  125. Underground Hacker Sites
  126. Hacking Tools Hardware
  127. Hack Tools 2019
  128. Hacker Tools Apk Download
  129. Nsa Hacker Tools
  130. Hacking Apps
  131. New Hack Tools
  132. Hacking Tools For Kali Linux

歡迎蒞臨:https://ofa588.com/

娛樂推薦:https://www.ofa86.com/

2024年1月20日 星期六

RECONNAISSANCE IN ETHICAL HACKING

What is reconnaissance in ethical hacking?
This is the primary phase of hacking where the hacker tries to collect as much information as possible about the target.It includes identifying the target ip address range,network,domain,mail server records etc.

They are of two types-
Active Reconnaissance 
Passive Reconnaissance 

1-Active Reconnaissance-It the process from which we directly interact with the computer system to gain information. This information can be relevant and accurate but there is a risk of getting detected if you are planning active reconnaissance without permission.if you are detected then the administration will take the severe action action against you it may be jail!

Passive Reconnaissance-In this process you will not be directly connected to a computer system.This process is used to gather essential information without ever interacting with the target system.

Continue reading


  1. What Are Hacking Tools
  2. Pentest Tools
  3. Hacker Tools Apk
  4. Hack Tools Github
  5. Hacking Tools Online
  6. Pentest Tools List
  7. Tools 4 Hack
  8. Underground Hacker Sites
  9. Bluetooth Hacking Tools Kali
  10. Pentest Tools Find Subdomains
  11. Pentest Tools Url Fuzzer
  12. Tools For Hacker
  13. Pentest Tools Bluekeep
  14. Android Hack Tools Github
  15. Hacking Tools 2019
  16. What Are Hacking Tools
  17. Hack Tools Pc
  18. Hacking Tools Github
  19. Growth Hacker Tools
  20. Hacker Tools For Mac
  21. Hack Tools 2019
  22. Beginner Hacker Tools
  23. Hack Tools For Pc
  24. Hacking Tools For Games
  25. Pentest Tools Nmap
  26. Hack Tools Pc
  27. Hack Tools Github
  28. Pentest Tools For Ubuntu
  29. Hak5 Tools
  30. Pentest Tools Website Vulnerability
  31. Pentest Reporting Tools
  32. Pentest Tools Tcp Port Scanner
  33. How To Hack
  34. Hacking Tools Github
  35. Hacks And Tools
  36. Hack Tool Apk No Root
  37. Hacking App
  38. How To Install Pentest Tools In Ubuntu
  39. Hacker Tools Github
  40. Pentest Tools Alternative
  41. Game Hacking
  42. Tools 4 Hack
  43. Hack Website Online Tool
  44. Pentest Tools Android
  45. Hack Tools Mac
  46. Hacker Search Tools
  47. Top Pentest Tools
  48. Hacker Security Tools
  49. Hacking Tools
  50. Pentest Tools Review
  51. Nsa Hacker Tools
  52. Hacking Tools For Windows
  53. Hacking Tools Free Download
  54. Pentest Tools Website
  55. Free Pentest Tools For Windows
  56. Hacking Tools For Pc
  57. Hack Tool Apk No Root
  58. New Hack Tools
  59. Blackhat Hacker Tools
  60. Pentest Tools Alternative
  61. How To Install Pentest Tools In Ubuntu
  62. Hacking Tools Online
  63. Hacking Tools For Pc
  64. How To Make Hacking Tools
  65. Pentest Tools Open Source
  66. Hacking Tools Mac
  67. Hacking Tools For Windows 7
  68. Pentest Tools Nmap
  69. Hacking Tools Github
  70. Hack Tools
  71. Hacking Tools For Mac
  72. World No 1 Hacker Software
  73. Hacking Tools And Software
  74. Android Hack Tools Github
  75. Hacking Tools Hardware
  76. Hacker Tools 2019
  77. Pentest Tools Apk
  78. Hacker Search Tools
  79. Hacking Tools For Beginners
  80. Hack Tools For Ubuntu
  81. Hack Tools For Windows
  82. Hacker Tools Mac
  83. Tools 4 Hack
  84. Pentest Tools Port Scanner
  85. Hacking Tools Online
  86. Hackrf Tools
  87. Hacking Tools For Mac
  88. Pentest Tools Bluekeep

歡迎蒞臨:https://ofa588.com/

娛樂推薦:https://www.ofa86.com/